A merit function method for infinite-dimensional SOCCPs
نویسندگان
چکیده
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولThe Infinite Dimensional Evans Function
We introduce generalized operator valued Jost solutions of first order ill-posed differential equations on Hilbert spaces. We then construct an infinite dimensional Evans function for abstract differential equations as a 2– modified Fredholm determinant of the operator obtained by adding the values at zero of the generalized operator valued Jost solutions. Next, we prove a formula that connects...
متن کاملTwo Classes of Merit Functions for Infinite-dimensional Second Order Complimentary Problems
In this article, we extend two classes of merit functions for the second-order complementarity problem (SOCP) to infinite-dimensional SOCP. These two classes of merit functions include several popular merit functions, which are used in nonlinear complementarity problem, (NCP)/(SDCP) semidefinite complementarity problem, and SOCP, as special cases. We give conditions under which the infinite-dim...
متن کاملA Merit Function Approach for Direct Search
In this paper it is proposed to equip direct-search methods with a general procedure to minimize an objective function, possibly non-smooth, without using derivatives and subject to constraints on the variables. One aims at considering constraints, most likely nonlinear or non-smooth, for which the derivatives of the corresponding functions are also unavailable. The novelty of this contribution...
متن کاملInfinite-dimensional compressed sensing and function interpolation
We introduce and analyze a framework for function interpolation using compressed sensing. This framework – which is based on weighted l minimization – does not require a priori bounds on the expansion tail in either its implementation or its theoretical guarantees. Moreover, in the absence of noise it leads to genuinely interpolatory approximations. We also establish a series of new recovery gu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.05.019